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Constrained flow around a magnetic obstacle
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Many practical applications exploit an external local magnetic field – magnetic
obstacle – as an essential part of their operation. It has been demonstrated that the
flow of an electrically conducting fluid influenced by an external field can show several
kinds of recirculation. The present paper reports a three-dimensional numerical study,
some results of which are compared with an experiment on such a flow in a rectangular
duct. First, we derive equations to compute analytically the external magnetic field
and verify these equations by comparing with experimentally measured field intensity.
Then, we study flow characteristics for different magnetic field configurations. The
flow inside the magnetic gap is dependent mainly on the interaction parameter N ,
which represents the ratio of the Lorentz force to the inertial force. Depending
on the constrainment factor κ = My/Ly , where My and Ly are the half-widths of
the external magnet and duct, the flow can show different stationary recirculation
patterns: two magnetic vortices at small κ , a six-vortex ensemble at moderate κ , and
no vortices at large κ . Recirculation appears when N is higher than a critical value
Nc,m. The driving force for the recirculation is the reverse electromotive force that
arises to balance the reverse electrostatic field. The reversal of the electrostatic field
is caused by the concurrence of internal and external vorticity respectively related to
the internal and external slopes in the M-shaped velocity profile. The critical value
of Nc,m grows quickly as κ increases. For the case of well-developed recirculation,
the numerical reverse velocity agrees well with that obtained in experiments. Two
different magnetic systems can induce the same electric field and stagnation region
provided these systems have the same power of recirculation, given by the N/Nc,m

ratio. The three-dimensional helical characteristics of the vortices are elaborated, and
an analogy is shown to exist between helical motion inside the recirculation studied
and secondary motion in Ekman pumping. Finally, it is shown that a two-dimensional
model fails to properly produce stable two- and six-vortex structures as found in the
three-dimensional system. Interestingly, these recirculation patterns appear only as
time-dependent and unstable transitional states before a Kármán vortex street forms,
when one suddenly applies a retarding local magnetic field to a constant flow.

1. Introduction
An electrically conducting fluid flow influenced by a local external magnetic field

is of considerable fundamental and practical interest. When applied to the flow, a
transverse homogeneous magnetic field creates a so-called magnetic obstacle, i.e. a
region where the flow motion is retarded by the Lorentz force.

† Current address: University of Cyprus, 75 Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia,
Cyprus.
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Figure 1. Structure of the wake of a solid (a) and magnetic obstacle (b). By forming the
wake, the solid obstacle develops attached vortices, while the magnetic obstacle develops inner
(first pair), connecting (second) and attached vortices (third pair).

On the fundamental side, such a system possesses a rich variety of dynamical
states. This is because its behaviour is characterized by two parameters, the Reynolds
number Re = u0H/ν and interaction parameter N = σHB2

0/ρu0, where H , u0, B0 are
characteristic scale, velocity and magnetic field induction, and ρ, ν, σ are density,
kinematic viscosity, and electric conductivity of the fluid, see e.g. Shercliff (1962),
Roberts (1967), Moreau (1990), Davidson (2001). Re represents the ratio of the
inertial to viscous forces in the flow, and N represents the ratio of the Lorentz forces
to the inertial forces. In ordinary hydrodynamics, such as the flow around a solid
obstacle, an increase of the inertial force, i.e. Re, introduces the nonlinear dynamics
characterized by a vortex motion past the obstacle, see figure 1(a). The additional flow
parameter N brings new nonlinear degrees of freedom to the problem as elaborated
recently by Votyakov et al. (2007), see figure 1(b).

On the practical side, spatially localized magnetic fields play an essential role in
a variety of industrial applications in metallurgy, see e.g. Davidson (1999), including
stirring of melts by a moving magnetic obstacle (called electromagnetic stirring,
e.g. Kunstreich 2003), removing undesired turbulent fluctuations during steel casting
using steady magnetic obstacles (called electromagnetic braking, e.g. Takeuchi et al.
2003) and non-contact flow measurement using a magnetic obstacle (called Lorentz
force velocimetry, e.g. Thess, Votyakov & Kolesnikov 2006). For instance, it is
important to understand whether the useful turbulence-damping effect of a magnetic
brake is obliterated by excessive vorticity generation in the wake of the magnetic
obstacle.

As is well known, in the flow past a solid obstacle, there is a stagnation region where
one can observe a recirculation in the appropriate Reynolds number regime, so-called
attached vortices shown in figure 1(a). If the solid obstacle is replaced by a magnetic
obstacle, by means of a local external magnetic field, then electrical eddy currents j
will appear which induce the Lorentz force FL = j × B. The largest retarding effect
occurs where the transverse magnetic field B is a maximum. Therefore, past the
magnetic obstacle there is also a stagnation region where a kind of a reverse flow
might be obtained. This analogy between a solid and a magnetic obstacle has been
known from the beginning of magnetohydrodynamics (MHD). In the earliest two-
dimensional numerical simulation, Gelfgat, Peterson & Shcherbinin (1978) observed a
kind of recirculation and noted the analogy with a solid body: ‘the qualitative pattern
of the streamlines in such a flow is similar to the situation which arises in the case
of the flow around objects’. However, the specially designed physical experiments of
Gelfgat & Olshanskii (1978) following this simulation failed to confirm their previous
numerical results: ‘special attempts which we made to detect zones with return flow
were not successful. The negative flows which occur in certain numerical calculations



Constrained flow around a magnetic obstacle 133

are obviously due to inaccuracies in the calculation’. They were correct about the
inaccuracies of their two-dimensional approach in the sense that this approach is not
suitable to describe their experiments; nevertheless it has still been possible to reveal
a kind of recirculation in the experiments. We shall discuss this later in the § 3.2.

For Western readers, the term ‘magnetic obstacle’ was revived in Cuevas, Smolentsev
& Abdou (2006a). (In the 1970s, one of the authors, Yu. K., used ‘magnetic obstacle’ as
a working term in the Riga, MHD centre of the former USSR.) Cuevas et al. (2006a)
performed a two-dimensional numerical study and described a Kármán vortex street
past the obstacle similar to those observed past a circular solid cylinder. We discuss
the link between our three-dimensional stationary and their two-dimensional non-
stationary results in § 3.7.

The most recent results on the wake of a magnetic obstacle have been obtained by
Votyakov et al. (2007). Their main result is presented in figure 1 where the qualitative
structure of the wake of a magnetic obstacle is given in comparison with the wake
of a physical obstacle. By means of three-dimensional simulation and experiments,
Votyakov et al. (2007) found that the liquid metal flow shows three different regimes:
(i) no vortices, when the viscous force prevails at small Lorentz force, (ii) one pair of
inner magnetic vortices between the magnetic poles, when the Lorentz force is high
and inertia small, and (iii) three pairs, namely, magnetic as in (ii), plus connecting and
attached vortices, when the Lorentz and inertial forces are high. The latter six-vortex
ensemble is shown in figure 1(b).

An important factor in the flow influenced by an external magnetic field is the
spanwise heterogeneity of the field. One can distinguish two extremal cases: (i) a
pointwise braking Lorentz force, and (ii) a spanwise homogeneous braking Lorentz
force. The latter case can be easily created, e.g. by external magnets long enough to
overlap the duct, while the first case represents an idealization since it is impossible
to have a pointwise external magnetic field. The first case is well-studied in a two-
dimensional stratified flow, e.g. Voropayev & Afanasyev (1994); it has been shown
that dipolar vorticity is generated in the vicinity of the origin of the point braking
force. Applied to MHD flows, similar results were obtained with a two-dimensional
numerical simulation of creeping flow both by Gelfgat et al. (1978) and recently by
Cuevas, Smolentsev & Abdou (2006b). The vortex dipole observed in those works is
of the same nature as the magnetic vortices that we will discuss in the present paper.

The second case, spanwise homogeneous magnetic fields, is of traditional MHD
interest and well understood. In particular, an M-shaped profile is developed under
a streamwise magnetic field gradient, Shercliff (1962). It has been studied extensively
in experiments (Kit et al. 1970; Tananaev 1979) and by numerical simulation (Sterl
1990; Votyakov & Zienicke 2007). The most recent numerical paper (Votyakov &
Zienicke 2007) by comparing with experiment (Andreev, Kolesnikov & Thess 2007)
has established that when turbulent pulsations are suppressed by an external magnetic
field, the interaction parameter N governs the flow. It has been shown numerically that
a spanwise homogeneous magnetic field is not able to reverse the electric field inside
the magnetic gap. As we shall prove below spanwise inhomogeneity is a necessary
condition to induce recirculation between magnetic poles.

The goals of the present paper are the following: (i) to report details not published
in Votyakov et al. (2007) (ii) to investigate thoroughly how constraining MHD
flow influences stationary vortex patterns, (iii) to explain the driving force for the
recirculation, (iv) to find the three-dimensional characteristics of the flow, and (v)
to clarify whether a two-dimensional flow contains the observed stationary vortex
patterns. It will be demonstrated that the decisive parameter for the constrained
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MHD flow is the strength of the recirculation between magnetic poles given by
the ratio N/Nc,m, where Nc,m is a critical value of the interaction parameter for
inducing magnetic vortices in the given magnetic field configuration. Moreover, several
successful comparisons with available experimental data will be given for the intensity
of the magnetic field, and for a maximal stationary reverse flow inside the magnetic
obstacle. It will be shown that the magnetic vortices first appear due to the reverse
electromotive force which is induced in order to balance the reverse electrostatic
field inside the magnetic obstacle. Also, we will discuss a three-dimensional versus
two-dimensional numerical approach and show that the vortices found have a three-
dimensional helical structure, while in a two-dimensional model, for the given range
of parameters, these vortices are not fixed by the magnetic field and generate vortex
shedding.

The subject of the present paper has a close connection to questions of the stability
of MHD flows; however, we have not included a full bifurcation analysis of new
stationary flow patterns. The paper sheds light on the physical factors that determine
the occurrence of stationary recirculation, i.e. the spanwise inhomogeneity of the
magnetic field and the necessity of a three-dimensional geometry. We consider the
bifurcation and stability analysis as a further step, which – from the practical point of
view – involves additional programming work on our code to allow the computation
of Jacobi matrices and their eigenvalues in a high-dimensional dynamical system.
Therefore, besides others, the following question in particular will remain open: are
the topological changes of the flow patterns, which we have observed on changing
the system parameters, caused by changes of stability, i.e. bifurcations, or not? This
and other open questions deserve further investigation for MHD channel flow in
inhomogeneous magnetic field.

The structure of the present paper is as follows. Section 2 presents a sketch of
the model, equations and a three-dimensional numerical solver. As an essential part,
it describes in § 2.2 an analytical method to deal with a magnetic field of arbitrary
configuration. Section 3 presents the results of our numerical simulations: stationary
flow patterns in the middle plane in § 3.1, the stability diagram in § 3.3, the mechanism
for recirculation in § 3.4, the three-dimensional characteristics of vortices in § 3.6,
as well as a relationship between three-dimensional and two-dimensional numerical
methods in § 3.7. Finally, the paper ends with conclusions on the observations.

2. Problem definition
2.1. Model, equations, numerical method

A schematic of the model is presented in figure 2: a conducting fluid flows in a
rectangular duct of dimensions Length × Width × Height= 2Lx × 2Ly × 2H (the half-
length of the duct is shown); the x-axis corresponds to the main direction of the
flow. Top, bottom and sidewalls of the duct are no slip and electrically insulating.
The magnets of horizontal dimensions Width × Length=2My × 2Mx are assembled
symmetrically on the top and bottom walls, where 2h is the distance between north
and south poles. The centre of the magnetic gap is the centre of the coordinate
system. The constrainment factor κ = My/Ly defines the spanwise distribution of the
magnetic field; κ is the geometric parameter varied in the present simulations. Below,
we will refer to the case of κ = 0.02 as a magnetic blade, κ = 0.4 as a middle magnet,
and κ = 1.0 as a broad magnet.

Unless otherwise specified, throughout the paper the following geometric parameters
have been taken: Lx = 25, Ly = 5, H = 1, h = 1.5, Mx = 1.5, 0.02 � κ � 1. Reynolds
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Figure 2. Sketch of the model. Throughout the paper the constrainment factor κ = My/Ly is
used, where My and Ly are half-width of the magnet and duct, correspondingly.

number, Re, and interaction parameter, N , are defined with the half-height of the
duct H , the mean flow rate u0, and the magnetic field intensity B0 taken at the centre
of the magnetic gap, x = y = z = 0.

The governing equations for electrically conducting and incompressible fluid are
derived from the Navier–Stokes equation coupled with the Maxwell equations
for a moving medium and Ohm’s law. We apply the quasi-static (inductionless)
approximation where it is assumed that an induced magnetic field is infinitely small
in comparison to the external magnetic field, see e.g. Roberts (1967), and is therefore
neglected when calculating the Lorentz force, but it is not neglected when finding the
electric current density j . The resulting equations in dimensionless form are

∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
�u + N( j × B), ∇ · u = 0, (2.1)

j = −∇φ + u × B, ∇ · j = 0, (2.2)

where u denotes velocity field, B is an external magnetic field, j is electric current
density, p is pressure, φ is electric potential. The interaction parameter N and
Reynolds number Re, N = Ha2/Re, are linked by means of the Hartmann number Ha:
Ha =HB 0(σ/ρν)1/2. The Hartmann number determines the thickness of Hartmann
boundary layers; δ/H ∼ Ha−1; for the flow under a constant magnetic field. For a
given conducting fluid and geometry of the duct, we vary either the flow rate velocity
u0, i.e. Re, or the magnetic field intensity B0, i.e. Ha. In both cases, N changes.

For given external field B, the unknowns of the partial differential equations (2.1)–
(2.2) are the velocity vector field u(x, y, z), and two scalar fields: pressure p(x, y, z) and
electric potential φ(x, y, z). For no-slip and insulating walls, the boundary conditions
are u|Γ = 0, ∂φ/∂n|Γ = 0, where n is the normal vector to a surface Γ . The outlet
of the duct was treated as a force free (straight-out) boundary for the velocity. The
electric potential at the inlet and outlet boundaries was taken to be equal to zero
because the inlet and outlet are sufficiently far from the magnetic field. The stationary
laminar profile of an infinite rectangular duct known analytically in the form of a
series expansion was used as the inlet velocity profile. Because we are interested in
a stationary solution, the initial conditions play no role (except for the speed of
convergence).
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The three-dimensional numerical solver has been described in detail in Votyakov &
Zienicke (2007). It was developed from a free hydrodynamic solver created originally
in the research group of Professor Dr. M. Griebel (Griebel, Dornseifer & Neunhoeffer
1995). The solver employs the Chorin-type projection algorithm and finite differences
on an inhomogeneous staggered regular grid. Time integration is by the explicit
Adams–Bashforth method that has second-order accuracy. Convective and diffusive
terms are implemented by means of the VONOS (variable-order non-oscillatory
scheme) scheme. The three-dimensional Poisson equations for pressure and electric
potential, arising at each time step, are solved by using the bi-conjugate gradient
stabilized method (BiCGStab).

The computational domain, |x| � Lx , |y| � Ly , |z| � H , has been discretized by an
inhomogeneous regular three-dimensional grid described in detail in Votyakov &
Zienicke (2007). To verify that the inlet and outlet boundaries have no influence on
the presented results, we have carried out several simulations with double the number
of grid points in the x-direction and found no differences. Moreover, we have also
varied the inhomogeneous grid resolution both in the y- and z-direction to ensure
that the Hartmann and sidewall layers are properly resolved.

2.2. Fast analytical method for a proper magnetic field

The electrodynamics imposes that an external magnetic field must be divergence- and
curl-free. Although authors of previous works realized this, to define their fields they
used simple mathematical functions which did not satisfy divergence- and/or curl-
free requirements, see e.g. Sterl (1990), Alboussiere (2004). This could be explained
by many reasons, e.g. by the complexity of a real field or the insignificance of effects
appearing due to an inaccuracy of the field definition. Therefore, there appear to be
insufficient correct and yet simple methods to define an external magnetic field of
arbitrary configuration. To fill this gap we explain below a simple physical approach
which can be easily extended and implemented to three-dimensional numerical models.

We assume that a magnet is composed of perfectly aligned pointwise magnetic
dipoles having the same magnetic moment. This assumption is well posed for modern
manufactured permanent magnets, as follows from the final comparison between
calculated and experimentally measured magnetic fields. Take z as the direction of the
unit magnetic dipole m =(0, 0, 1); then, a partial magnetic field at point r =(x, y, z)
from a dipole located at point r ′ = (x ′, y ′, z′) can be presented as, see e.g. Jackson
(1999),

B′(r, r ′) = ∇ ×
[

m × R
R3

]
= ∇ ×

[
−m ×

(
∇ 1

R

)]

= ∇ ×
[

∇ ×
(m

R

)
− 1

R
∇ × m

]
= ∇

[
∇ · m

R

]
= ∇ ∂

∂z

1

|r − r ′| . (2.3)

where R = r − r ′ and R = |r − r ′|. Here we have used R/R3 = − ∇(1/R) along with
few vector identities and omitted the constant μ0/(4π). Then, the total field from a
magnet occupying a space Ω follows as

B(r) =

∫
Ω

B′(r, r ′) dr ′ = ∇ ∂

∂z
Φ(r), Φ(r) =

∫
Ω

dr ′

|r − r ′| . (2.4)

The last integral can be computed analytically in some cases as we show below.
For an arbitrary Ω , the integration can be performed only numerically and then
be once tabulated in a three-dimensional array. This three-dimensional array can be
put into a numerical solver where a finite differentiation is applied to compute the
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Figure 3. Comparison of computed (lines) and experimental (symbols) magnetic field
intensities at different κ = My/Ly: κ = 0.02 (dot-dashed), 0.4 (dashed and symbols) and 1.0
(solid), and z = − 0.7: (a) Bz component along x, y = 0, (b) Bx component along x, y = 0, (c)
Bz component along y, x = 0, (d) By component along y, x = 0.

external magnetic field. Another way is to differentiate analytically 1/|r − r ′| and then
calculate numerically three integrals for each magnetic field component.

When the limits of the integration imposed by Ω are independent of each other,
then the problem has an analytical solution by means of the indefinite integrals given
in the Appendix.

As shown in figure 2, the magnetic dipoles are located in the region Ω =
{|x ′| � Mx, |y ′| � My, h � |z′| � ∞}, where 2h is the distance between the north and
south magnetic poles. In the present paper, the condition |z′| � h is assumed because
the magnets used in the experiments are assembled onto a soft-iron yoke that closes
magnetic field lines, i.e. the dipoles are effectively located from h to infinity. By taking
the corresponding derivatives of indefinite integrals given in the Appendix, and after
a few algebraic calculations one obtains

Bx(x, y, z) =
1

B0

∑
k=±1

∑
j=±1

∑
i=±1

(ijk) arctanh

[
y − jMy

r(i, j, k)

]
, (2.5)

By(x, y, z) =
1

B0

∑
k=±1

∑
j=±1

∑
i=±1

(ijk) arctanh

[
x − iMx

r(i, j, k)

]
, (2.6)

Bz(x, y, z) = − 1

B0

∑
k=±1

∑
j=±1

∑
i=±1

(ijk) arctan

[
(x − iMx)(y − jMy)

(z − kh)r(i, j, k)

]
, (2.7)

where r(i, j, k) = [(x − iMx)
2 + (y − jMy)

2 + (z − kh)2]1/2, and B0 is selected in such a
way that Bz(0, 0, 0) = 1. Three-fold summation with the sign-alternating factor (ijk)
reflects the fact that these equations are obtained by integrating according to (2.4).

Figure 3 shows cuts of magnetic field intensities computed with equations (2.5)–
(2.7) for different κ . Also, some experimental data (symbols) are presented for κ =0.4.
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There is a good agreement between experimental and analytical results. Moreover,
one can see that the constrainment factor κ mainly affects the spanwise distribution
of magnetic field, whereas the streamwise distribution changes only slightly. This is
expected, because the length Mx of the magnet is fixed, while the width My = κLy is
varied. Note that even for the broad magnet (κ = 1.0) there is still a decline of Bz

near sidewalls, figure 3(c).
Contour lines of the Bz component in the middle plane (z = 0) at different κ are

also shown in figure 4(a–c).
Thus, we have demonstrated a self-consistent analytic approach to define arbitrary

magnetic field configurations. It guarantees the divergence- and curl-free requirements
of B(r) and has a link with a clear physical model.

3. Results and discussion
3.1. Stationary flow patterns in the middle plane

In § 3.1 we discuss characteristic stationary flow patterns which have been extracted
from three-dimensional numerical results. Three-dimensionality of the simulations is
of importance to make these patterns stable, as we shall show later in § 3.7.

3.1.1. Streamlines for different constrainment κ

In our opinion the most striking effect of spanwise heterogeneity of the external
magnetic field is shown in figure 4, where flow streamlines in the middle plane,
figure 4(d–f ), are shown at the same flow parameters, N = 36 and Re = 196. To get
an impression of the magnetic field configurations, the corresponding Bz contour
lines are shown in figure 4(a–c). Depending on the constrainment factor κ , one
observes the following stationary flow patterns: a vortex dipole for the magnetic
blade (κ = 0.02), figure 4(a, d); the stable six-vortex ensemble for the middle magnet
(κ =0.40), figure 4(b, e); and no vortex motion for the broad magnet (κ = 1.0),
figure 4(c, f ). The projection of the magnetic pole onto the middle plane is shown by
the bold solid line.

Let us qualitatively explain these flow patterns. The case of the magnetic blade,
figure 4(a, d), might be roughly understood by considering the limiting case of
a Lorentz force which is pointwise in the spanwise direction. (By its definition,
FL = j × B, the Lorentz force is a volume force; however, if the distribution of
heterogeneous magnetic field B is very sharp in space, the Lorentz force distribution is
also very sharp.) As is known, see e.g. Voropayev & Afanasyev (1994), such an instant
retarding force generates vorticity which results in two counter-rotating vortices, a
vortex dipole. Then, the induced vortices are advected and diffused downwards from
the source of the force. In the case of MHD flow, these two vortices are fixed by a
sideways gradient of the magnetic field, so they stay in place. We should note that
a similar recirculation has been obtained numerically earlier by Gelfgat et al. (1978),
and recently by Cuevas et al. (2006b) for a creeping flow.

The case of the middle magnet, figure 4(b, e), is explained briefly in Votyakov et al.
(2007) by means of a mutual interaction of Lorentz and inertial forces. The first pair –
inner magnetic vortices – is an inheritor of the vortex dipole as in figure 4(d); the
third pair – attached vortices – is of the same nature as recirculation past a solid
body, figure 1(a), while the intermediate pair – connecting vortices – appears to make
the coherent rotation of the magnetic and attached vortices possible, figures 1(b), 4(e).
It is clear why attached (hence, connecting) vortices are not induced in the case of
the magnetic blade: it has a streamlined shape, so there is no stagnation region. This
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Figure 4. (a–c) Contour lines of the transverse magnetic field component and (d–f ) flow
streamlines in the middle plane (z =0) at N =36,Re = 196 and (a, d) κ = 0.02, (b, e) 0.4, and
(c, f ) 1.0. Magnetic pole is shown by bold lines. Dot-dashed (d), dashed (e) and solid (f )
vertical cuts denote the location of velocity profiles of figure 5.

is in full analogy with the flow around a solid body where the appearance of the
stagnation region is strongly influenced by the extent of streamlining.

Finally, the case of the broad magnet, figure 4(c, f ), shows no recirculation at
given parameters, because the flow pattern is now influenced mainly by streamwise
inward and outward gradients of the magnetic field. As is known, see e.g. Shercliff
(1962), Kit et al. (1970), Sterl (1990), the streamwise gradients and sidewalls of the
duct are together responsible for an M-shaped profile of the streamwise velocity in
the spanwise direction. The M-shaped profile can also develop a stagnation region
in the middle of the duct at high interaction parameter N; however, no recirculation
has been discovered until now. Moreover, as we shall prove in § 3.4, no recirculation is
possible if an external magnetic field is perfectly spanwise uniform. The present case
of the broad magnet shows a slight decrease of Bz towards sidewalls, see figure 3(c,
solid line). In figure 4(c), however, this decrease is not enough to develop magnetic
vortices at the given interaction parameter N = 36. We will see later that the critical
interaction parameter Nc,m which is needed to induce recirculation under the broad
(κ = 1.0) magnetic gap is more than 100.
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3.1.2. Velocity profiles at different κ and the same N and Re

Figure 5 shows quantitative data on stream- and spanwise velocity along different
spanwise cuts. Different line styles correspond to the different κ . Arrows in figure 5
show directions of spanwise redistribution of the flow.

The largest braking Lorentz force, FL = j × B, is generated at the front of a
magnetic obstacle where induced electric currents j are maximum and the magnetic
field B is strong. This results in the deformation of the incoming flow on the obstacle
by x =− 4, figure 5(a). The deformation consists of an inhomogeneous M-shaped
profile of streamwise velocity ux and the appearance of a spanwise flow, i.e. uy , from
the centre to the sidewalls, as shown by arrows in figure 5(a).

Despite the order of magnitude difference in spanwise widths of magnets for
κ = 0.02 (dot-dashed) and κ =0.4 (dashed), their ranges of reverse velocity (ux � 0,
figure 5(b)) along the y-axis differ only by a factor 1.5 in the area of magnetic vortices.
Positive streamwise velocities of the vortices are smoothly transformed into velocities
of the external flow. Thus, for the wide range of κ , the spanwise diameter of a single
magnetic vortex remains nearly constant provided the vortex is not influenced by a
sidewall. This is a manifestation of the fact that a decisive factor for the vortex is the
width of the spanwise decline of a magnetic field rather than the width of the magnet.

By forming magnetic vortices, the M-shaped profile of streamwise velocity ux

develops a negative value in the centre, while the spanwise velocity uy changes its sign
twice. There is a redistribution of the flow from the vortex inner side to the centreline
(y =0), and from the external side of the vortex to the corresponding sidewall (y = Ly).
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magnet (κ = 0.4): (a) effect of N at fixed Re =100; and (b) effect of Re at fixed N = 36. For
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(dashed), and 196 (solid lines). Vertical bold lines show edges of the magnetic gap, Mx = 1.5.
Inset in (b) is a centreline velocity profile for a flow around a circular cylinder with attached
vortices. The streamwise velocity is normalized with the centreline velocity of unretarded flow.

On the other hand there are distinct zones past the magnetic vortices where a spanwise
redistribution is absent (uy = 0), see |y| � 0.8 for the magnetic blade (κ =0.02, dot-
dashed) and |y| � 1.5 for the middle magnet (dashed), figure 5(c). Also, a zone of
uy = 0 is observed behind attached vortices, |y| � 1, figure 5(d), κ = 0.4.

The streamwise component of the velocity shows small changes with increasing x,
cf. ux in figure 5(b–d), except for a single peculiarity. For the case of a broad magnet
(κ = 1, solid lines), as x increases, the maximum of ux is shifted from the sidewalls to
the centre due to diffusion of vorticity. At the same time, the uy component changes
its sign in the region near the sidewalls.

3.2. Centreline profiles

In this Section, taking as an example the middle magnet, κ =0.4, we show what forces
are needed to induce vortices inside and past a magnetic obstacle. To reach this goal
we shall analyse streamwise velocities along the centreline of the duct (y = z = 0), i.e.
centreline profiles.

The main difference between a magnetic obstacle and a solid body is the
permeability of the obstacle depending on the retarding Lorentz force, FL = j × B.
This braking force is largest in the centre of the magnetic obstacle, where the magnetic
field B reaches the highest intensity. The characteristic measure of the Lorentz force
with respect to inertia is given by the interaction parameter N: the higher N , the
stronger is FL and the less penetrable is the space under the magnets. Figure 6(a)
illustrates this behaviour: the dot-dashed line (N =4) shows that the streamwise
velocity is suppressed on approaching the magnet; however the braking force for the
given N is not strong enough to reverse the flow. The reversal happens at higher N ,
see dashed (N = 9) and solid (N = 16) lines being negative inside the obstacle. The
lowest velocity is marked in figure 6(a) by ux,min; it becomes zero at a critical value
Nc,m, and at N � Nc,m one observes a recirculation – two inner magnetic vortices as
shown in figure 4(d, e). As the name suggests, these vortices belong completely to
the MHD flow, and have nothing in common with a hydrodynamical flow around
a cylinder. Rather, these vortices are similar to those appearing under the action of
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a point braking force, see e.g. Afanasyev (2006). The concrete mechanism leading to
the magnetic vortices is presented in § 3.4.

Now, we consider the behaviour of centreline curves at fixed N and varying Re,
figure 6(b) and apply the analogy with ordinary hydrodynamics. Let us recall that the
flow around a solid cylinder shows a stagnant region with two attached vortices when
Re is slightly higher than a critical value. The typical centreline for this case is shown
in the inset of figure 6(b). The same situation can happen for the magnetic obstacle by
increasing Re: the centreline curves past the magnetic gap become negative again as
shown in figure 6(b). In fact, attached vortices are induced past the magnetic obstacle,
see figure 4(e, third pair of vortices) analogous to those past a real solid body.

Note that the first minimum in a centreline profile is almost unperturbed when Re
increases at fixed N , figure 6(b), and this is more strong evidence that the vortices
inside and past the magnetic obstacle are of different physical origin. Since the
interaction parameter is given as N = Ha2/Re, the magnetic vortices are enhanced by
decreasing the flow rate (i.e. Re). On the other hand, as follows from figure 6(b), the
attached vortices manifest themselves by increasing the flow rate provided that the
intensity of the magnetic field (i.e. Ha) as well as a spanwise magnetic field gradient
have already enforced a reverse flow inside the magnetic obstacle. In other words,
there is a qualitative distinction between magnetic and attached vortices: the former
arise when Re decreases, and the latter arise when Re increases provided Ha is strong.

It is easy to see in figure 4(e) that magnetic and attached vortices are co-rotating in
a direction determined by the main flow movement. The only difference is the driving
torque: this is the Lorentz force for the magnetic vortices, and the inertial force for
the attached vortices. Because the MHD and attached vortices are co-rotating, such a
motion must be accompanied by a counter-rotation which produces the intermediate
pair of connecting vortices, see figure 4(e, second pair of vortices). The connecting
vortices correspond to a local maximum on centreline curves, see figure 6(b) behind
the magnetic gap.

Thus, N is responsible for the appearance of the magnetic vortices, while Re is
responsible for the appearance of the attached vortices. The connecting vortices are
necessary for the coherent rotation of the magnetic and attached vortices.

Three decades ago Gelfgat et al. attempted to reveal a kind of recirculation due
to an external magnetic field by both two-dimensional numerical simulation (Gelfgat
et al. 1978) and physical experiments (Gelfgat & Olshanskii 1978). They saw a reverse
flow numerically, and then designed a special experiment but it did not confirm the
recirculation. It follows from our results that the authors of the cited papers had not
realized that they had observed and discussed different phenomena in their numerical
and experimental works. Their two-dimensional numerical study neglected an inertial
term, which corresponds to a creeping flow, and the observed reversal of the flow is
just a sign of magnetic vortices. Recently, similar two-dimensional numerical work
by Cuevas et al. (2006b) showed the same effect in a creeping flow without sidewalls.
Thus, the numerical work of Gelfgat precedes Cuevas et al. (2006b) by almost thirty
years.

The experimental report of Gelfgat & Olshanskii (1978) contains a measured
centreline profile (see their figure 7b), which falls behind the magnet, but does not
approach negative velocities. In the cited experiment, parameters are N =7.5 and
Re = 3.73 × 105, so the authors noticed that the observed decreasing velocity is due to
inertial effects. Moreover, these experiments were performed for turbulent flow because
Re is rather high. To obtain the desired recirculation, the authors needed to decrease
the inertial force further by using a lower flow rate. This would have resulted in a
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higher N and, by exceeding some threshold, made the turbulent pulsations impossible.
Then, the recirculation by the braking Lorentz force might have been revealed via
the appearance of magnetic and attached vortices. Unfortunately, experiments with
lower Re have not been performed, probably because the proper analysis of centreline
curves (see figure 6) was not then available.

3.3. Existence regions of stationary flow patterns in parameter space

A sign of the recirculation enforced by the Lorentz force is the negative value of ux,min,
see figure 6(a). We have performed a series of three-dimensional simulations for the
different interaction parameters N and constrainment factors κ . An example of the
series for the middle magnet (κ = 0.4) is shown in figure 7(a). It is accompanied
by experimental data which were obtained by Oleg Andreev for the paper by
Votyakov et al. (2007) but not reported there due to lack of space. Note that
the interaction parameter N = Ha2/Re is changed differently in the experiments and
numerics: experimentally by varying the flow rate (i.e. Re) at fixed external magnets
(experimental Ha = 140), while numerically by keeping Re constant and changing Ha.
This is because of (i) experimental difficulties working with a low flow rate in the
closed channel, and (ii) numerical problems arising due to boundary layers at high
Hartmann numbers. Moreover, a transition to a turbulent regime is another factor
that obscures stationary effects in the numerics at high Re.

As one can see in figure 7(a), ux,min is positive at low N , and then falls monotonically
to a constant level, showing perfect agreement between experiments and numerics for
N > 15. This excellent agreement confirms that the flow under magnets depends solely
on N and magnetic field configuration rather than Re or inlet profile, provided the
external magnetic field is strong enough to suppress inward turbulent fluctuations. The
latter condition was satisfied in experiments by Andreev et al. (2007). Also, similarity
of the electric potential map at equal N and different Re has been recently confirmed
by three-dimensional simulations and comparison with experiments, see Votyakov &
Zienicke (2007). The slight difference shown in figure 7(a) at N < 15 is explained
by the fact that the variation of N has been defined differently in experiments and
numerics, as explained above.
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The dependence of ux,min on N becomes negative at a critical value Nc,m. This value
depends on the constrainment factor κ . A series of three-dimensional simulations has
been carried out for the range 0.02 � κ � 1 in the vicinity of ux,min(N) ≈ 0 and the
results are given in figure 7(b), which shows the separation between regions of stable
flow without and with magnetic vortices†. During this series of simulations we never
found a hint that both flow patterns – one with and one without magnetic vortices –
coexist for the same pair of parameters, i.e. both solutions are stable, but have
different basins of attraction. However, we have checked different initial conditions
only for some parameter combinations and did not carry out a systematic search with
different initial conditions. Therefore, we cannot conclude that the case of coexistence
of two solutions is impossible.

From the separation line of figure 7(b), as we have numerically determined it the
following trends are visible: the lower κ , the smaller the influence of sidewalls; the
case of κ → 0 corresponds to a free flow. The larger κ , the more uniform is the braking
Lorentz force in the spanwise direction. Therefore, in order to induce inner vortices
at larger κ it is necessary to apply a larger critical interaction parameter Nc,m. For the
middle magnets, κ � 0.5, the critical value of Nc,m is of the same order of magnitude,
Nc,m ≈ 6, and for broad magnets, κ � 0.8, it increases up to Nc,m =109 at κ = 1. The
latter case has been discussed earlier in figure 4(c, f ) for N = 36 as an example of
a vortex-free flow pattern. We prove in the next Section that any recirculation is
impossible if the external magnetic field is perfectly spanwise uniform.

3.4. The mechanism to induce recirculation: vorticity, electric field, drop of pressure

One has to analyse the electric field inside the magnetic obstacle for different κ in
order to understand why the appearance of vortex motion is strongly dependent on
the spanwise variation of the external magnetic field.

Let us recall that the electric potential, φ, is distributed according to the Poisson
equation, �φ = ∇ · (u × B) = B · ω, where ω = ∇ × u is the vorticity. Note that the
projection of ω on the externally fixed vector B plays the role of an induced electric
charge density which creates the electrostatic field E = − ∇φ. It is possible to derive
the direction of the field E from knowledge of positive and negative extrema in the
B · ω distribution, by roughly assuming that these extrema can be approximated as
point charges. As shown in electrostatics, the maximum (minimum) of the right-hand
side of the in Poisson equation, i.e. Bzωz, creates the minimum (maximum) in the φ

distribution.
For definiteness we consider the central spanwise cut, x = z = 0, where

Bx = By = 0, Bz � 0, and B · ω = Bzωz ≈ −Bz∂ux/∂y. This cut goes through the centre
of the magnetic gap and clearly shows characteristics typical of any spanwise cut.
Vorticity ωz, the product Bzωz, and resulting electric potential φ along this central
spanwise cut are shown in figure 8 for the broad (a) and middle (b) magnet. The
magnets are depicted at the top and bottom by filled rectangles.

The behaviour of vorticity, ωz ≈ − ∂ux/∂y, can be easily understood from the
spanwise deformation of the streamwise velocity, i.e. M-shaped velocity profile,

† It is tempting to call figure 7(b) a stability diagram. We do not do this, because – strictly
speaking – it is not proven that the change of topology of the flow patterns is caused by a change
of stability. We find this assumption highly probable, but we did not compute eigenvalues of the
Jacobi matrices for the stable flow patterns to check whether the transition is a bifurcation or not
(see also our remark at the end of the introduction). We continue to call Nc,m the critical interaction
parameter. This has to be understood not in the sense of a change of stability, but instead in the
sense of separating stable solutions with different topology.
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figure 5(c). Such a profile is characterized by two jets streamlining alongside the
magnetic obstacle, and each jet has internal and external slope; hence, the vorticity
alternates its sign by passing the velocity maximum of the jet. The steepness of the
external side of the jet is significantly higher than that of the internal side, especially
for the larger κ because the external slope is next to no-slip sidewalls. Figure 8 shows
that the sidewall vorticity, i.e. the external slope vorticity, is larger by an order of
magnitude than the vorticity next to the centre, i.e. the internal slope vorticity. To
stress this fact, figure 8 shows both global and enlarged (insets) views for ωz and
Bzωz.

When the spanwise variation of the magnetic field Bz(y) is weak, e.g. for the
broad magnet (κ =1) shown in figure 8(a), the product Bzωz reflects completely the
quantitative difference in ωz on the internal and external jet sides. Because the external
ωz is much higher than the internal ωz, the distribution of φ is determined mainly by
the vorticity generated on sidewalls rather than by that produced inside the obstacle.
Therefore, the negative (positive) external ωz induces a strong positive (negative)
potential on the sidewalls, and φ(y) drops monotonically along the y-axis, i.e. the
spanwise electrostatic field Ey = −∂φ/∂y is always positive and does not change its
sign between the sidewalls.

If the magnetic field is perfectly uniform along the y-axis, the electric potential
distribution is completely governed by the sidewall vorticity, and the alternating
vorticity on the internal slopes of the M-shaped profile does not contribute to φ(y)
even at large interaction parameter N . As a result, the electrostatic field E ≈ (0, Ey, 0)
in the region of the magnetic obstacle is always directed opposite to the electromotive
force, u × B ≈ (0, −uxBz, 0). On braking the flow, the streamwise velocity ux and
spanwise field Ey accordingly approach zero by keeping their signs. A stagnant
region can develop where streamwise velocity is small but still positive because the
electric field is always in the same direction. Therefore, recirculation is impossible.

Let us consider the case when the magnetic field intensity, Bz(y), decreases from
the centre to the sidewalls. Here, the high vorticity generated by the sidewalls in
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the product Bzωz is suppressed by the low intensity of the magnetic field. This is
shown by the middle magnet (κ = 0.4), figure 8b); the corresponding Bz(y) is shown
by dashed lines in figure 3(c). The product Bzωz resembles the ωz(y) behaviour
inside the magnetic obstacle, since there Bz(y) ≈ const, i.e. the internal vorticity is well
represented in Bzωz. Outside the obstacle, Bz(y) rapidly decreases, so the external
vorticity is greatly weakened: as follows from figure 8(b), the dashed Bzωz curve
diverges from the solid ωz curve. The largest difference between ωz and Bzωz is on the
sidewalls where the external vorticity is very high due to no-slip boundary conditions,
while Bzωz at |y| =Ly is of the same magnitude because its alternating extrema at
|y| ≈ My correspond with the edges of the magnet. Therefore, the dependence of φ(y)
can be influenced by the internal slopes of the M-shaped profile, which produces
extrema on φ(y) at |y| ≈ My alternating with the sign of φ on sidewalls. These internal
extrema on φ(y) reverse the spanwise electric field, i.e. Ey = −∂φ/∂y becomes negative
inside a finite magnetic obstacle.

The reverse spanwise electrical field appearing for a spanwise decaying magnetic
field is a necessary but not sufficient condition for the appearance of reverse flow.
It is a necessary condition, because otherwise no Lorentz force pointing in the
negative x-direction would appear. This becomes clear by looking at equations (2.1)
and (2.2) for the Lorentz force and current density: j × B = − ∇φ × B − B2u +
(u · B)B. Considering again the central spanwise cut, x = z = 0, where B = (0, 0, Bz),
u ≈ (ux, 0, 0) and j ≈ (0, jy, 0), one can write the x-component of the Lorentz force as
follows: ( j × B)x ≈ jyBz = EyBz − B2

z ux . The third term has vanished, and the second
term corresponds to a frictional force proportional to the velocity. The only term
which can provide a driving force for the reverse flow is the first term, and this
only then when Ey is negative, i.e. when a reverse spanwise electrical field exists.
However, the existence of a reverse spanwise electrical field is not sufficient to drive
reverse flow, because it has to reach a minimal strength. This becomes clear from
considering the y-component of Ohm’s law for the electrical current density at the
central spanwise cut: jy =Ey − uxBz. To see this, one needs additional information
concerning the global behaviour of the electrical current in our system. The electrical
current is organized in two horizontal loops, with a strong negative spanwise current
(i.e. jy < 0) directly under the magnet, which divides at the sidewalls into one loop in
front of the magnet and the other behind it (see figures 16, 17 and 18 of Votyakov
& Zienicke 2007). The sign of jy does not change when the interaction parameter is
increased. When Ey just changes sign at a certain value of N at the start of electric
field reversal, −uxBz must be negative. This is only possible for (still) positive ux , and
consequently N must be further increased until the reverse spanwise electrical field
becomes so strong that it equals jy . This characterizes the critical Nc,m, for which the
velocity ux is exactly zero. Let us denote this value of the reverse spanwise electrical
field by Ey,c. A further increase of the interaction parameter makes Ey more strongly
negative than jy with the consequence that ux must be smaller than zero, which is
equivalent to the existence of reverse flow and recirculation. Thus, summing up, the
role of the spanwise magnetic field gradient is to suppress the external vorticity and
promote the internal vorticity in the product of B · ω. When on a further increase
of the interaction parameter the internal spanwise electrostatic field is reversed more
strongly than the critical Ey,c, the recirculation appears.

Figure 9(a) shows Ey = −∂φ/∂y for the different magnets, taken in the centre of the
magnetic gap, x = y = z =0, as a function of the interaction parameter N normalized
with the critical value Nc,m. Taking the appearance of recirculation as the reference
flow pattern, the ratio N/Nc,m characterizes the strength of recirculation for various
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κ . One can see that the curves are close to each other when N/Nc,m � 1. Moreover,
when N/Nc,m = 1 one finds that the critical Ey,c ≈ − 0.17 is independent of κ . That is,
the critical magnitude of the spanwise electrostatic field, Ey,c, is a universal parameter
which is the same for different magnetic field configurations. This is clear because
Bz = 1 and jy = Ey,c when the recirculation starts, i.e. ux = uy = 0. So, Ey,c is indeed
the critical braking Lorentz force because FL,x = jyBz = Ey,c.

Let r = − (∂p/∂x)/Nc,m at x = y = z =0 be the resistance to the flow inside the
magnetic obstacle. At the beginning of recirculation the Navier–Stokes equation is
simplified up to ∂p/∂x +Nc,mEy,c = 0, so rc = −Ey,c. The behaviour of r as a function
of N/Nc,m for various κ is shown in figure 9(b). One can see that a change of the flow
regime is accompanied by a change of the slope in the resistance of r(N/Nc,m). For
those κ where the sidewall influence is insignificant, the appearance of recirculation
at N/Nc,m � 1 results in a drop in the resistance despite the fact that N increases.

The second effect of a drop in the resistance due to magnetic recirculation has
the same explanation as the ‘drag crisis’ well known in hydrodynamics. It appears
in the wake of a circular cylinder when the boundary layer on the cylinder surface
undergoes a transition from the laminar to turbulent mode. It causes a substantial
reduction in the drag force analogous to that in the wake of the magnetic obstacle.

3.5. Similarity of MHD flows inside the magnetic obstacle

As follows from (2.1) the viscous force �u is scaled by Reynolds number Re; therefore
at high Re and far from the walls it plays a minor role. As a result the flow must
be governed by the interaction parameter N defining the ratio between magnetic and
inertial forces. This peculiarity was noted in Votyakov & Zienicke (2007) by comparing
experimental and numerical electric potential distributions found at different Re and
similar N .

In the present paper, figure 10 demonstrates the same behaviour for the broad
(curves 1 and 3) and middle (curves 2) magnets. Solid and dashed curves 1, 2 have
the same N but Re = 100 for solid and Re =400 for dashed lines.

It is expected from the discussion of figure 9 that the results given in figure 10 would
be similar even for different constrainment factors κ and interaction parameters N
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provided the corresponding ratios N/Nc,m are equal. Curve 2 for the middle magnet
is plotted for N = 9, i.e. N/Nc,m(κ = 0.4) = 9/6.8 = 1.32 and curve 3 for the broad
magnet for N = 144, i.e. N/Nc,m(κ = 1.0) = 144/109 = 1.32. One can see that in the
central part |y| � 2, being approximately the spanwise dimension of the smaller magnet
(My = 0.4 × 5 = 2), both electric potential (a) and streamwise velocity (b) are also close
to each other, cf. curves 2 and 3.

3.6. Three-dimensional characteristics of the flow

Figure 11 shows different three-dimensional space perspective views of chosen
streamlines inside the six-fold vortex pattern for the middle magnet (κ = 0.4), N = 16,
and Re = 196. For easy visualization, plot (a) shows the XY projection of all vortices,
i.e. magnetic, connecting, and attached, while other plots present only part of the
recirculation. Plot (b) shows the XZ projection for magnetic and attached vortices,
plots (c, d) are YZ projections of the magnetic and attached vortices, respectively.

The following three-dimensional features are observed in figure 11: (i) a helical
motion inside every vortex; (ii) the axes of rotation of the magnetic vortices are
parallel to the lines of external magnetic field; (iii) the two magnetic vortices are
closely adjoined to each other and taken together they form a barrel with an extended
central part and located mainly between the magnetic poles; (iv) two helices of
attached vortices are not adjoined and are arched along the x-direction.

Additionally, figure 12 presents flow streamlines constructed from the uy and uz

components of velocity field for a few characteristic vertical slices: in front of the
magnet (x = − 4, plot a), and vertical cuts of magnetic (x = 0, plot b), connecting
(x =4, plot c) and attached (x = 8, plot d) vortices. These (uy , uz) streamlines are not
lines of moving fluid particles in the vertical slices, because the particles have also
an ux velocity component. Instead, these streamlines are intended to show ascending
and descending paths of fluid particles in vertical slices as projection.

At x = −4, figure 12(a), one observes the braking effect of the Lorentz force making
the flow streamlines diverge from the central point y = z = 0, where the greatest change
of ∂ux/∂x = −(∂uy/∂y + ∂uz/∂z) occurs. Because the ux component is not involved in
the plot, this effect appears to be the source of the flow. Also there is motion in the
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and N = 16, Re = 196: (a) XY view, magnetic, connecting and attached vortices, (b) XZ view,
magnetic and attached vortices, (c) YZ view, magnetic vortices, (d) YZ view, attached vortices.
The fluid motion inside the vortices is visualized by properly chosen streamlines.
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z-direction caused by a tendency to form Hartmann layers, see Votyakov & Zienicke
(2007).

At x =0, figure 12(b), one first notices the abrupt change of the motion in the
y-direction at |y| ≈ 2. This helps us to see the vertical borders of the magnetic vortices
where the uy reverse its sign. Moreover, the barrel shape of the magnetic vortex dipole
can be clearly seen. Directions of arrows on the flow streamlines demonstrate a drift
of the flow from top/bottom walls towards the centre inside the magnetic vortices,
and a drift in the opposite direction outside them. Such a drift is a reflection of helical
motion which can be seen in perspective in figure 11.

Similar to figure 12(b), sharp boundaries between the main flow and connecting
(x =4, figure 12c) and attached (x = 8, figure 12d) vortices are observed. One also
observes a remarkable vertical drift to and from the top and bottom walls depending
on the direction of horizontal rotation. The vertical drift at x = 4 and x = 8 is more
pronounced than that at x = 0 because the magnetic field has a much larger intensity
in the case of x = 0. The new phenomena compared to figure 12(b) are the swirls
in the corners of the duct shown in figure 12(c, d). Similar swirls can also appear
when an MHD flow has no recirculation. They arise due to the inertial force and
destruction of Hartmann layers resulting from a decrease in the magnetic field, see
Votyakov & Zienicke (2007).

The vertical drifts shown in figure 12(b–d) are caused by rotation of the fluid and
can be understood as a manifestation of the hydrodynamic Ekman pumping effect,
see e.g. Davidson (2001). There are six rotating columns in the MHD flow studied
here, and each one has its own primary horizontal motion and secondary vertical
drift. Taken together this gives rise to the helical motion clearly observed in figure 11.

The whole three-dimensional space trajectory for an infinitesimally small volume
of fluid – a fluid particle – can now be described in the following way. Far upstream
from the magnetic system, the particle moves in a straightline under the pressure
gradient. Approaching the region of influence of the magnetic obstacle, the particle
turns towards the closest corner owing to the action of the braking Lorentz force
and reaches a boundary layer. If the particle is not captured by recirculation, it
then passes the region of the magnetic obstacle in the bulk of two jets streamlined
alongside the obstacle. If the particle is captured by recirculation, it first goes down
(up) from the top (bottom) towards the middle plane in the helix of the magnetic
vortex. In the middle plane, this trajectory joins the helix of the closest connecting
vortex and passes helically towards the top (bottom) wall to reach again the boundary
layer and dissipate the kinetic energy. Then, the particle can be caught by the helix
of the attached vortex and drift slowly to the middle plane where it finally is free to
go downstream from the magnet.

Recirculation under the magnetic poles brings new details into top and bottom
boundary layers perpendicular to the magnetic field. These layers are Hartmann layers
in the case of a constant magnetic field, Ekman layers in the case of an axisymmetric
rotating flow bounded by a fixed horizontal plate, and Ekman–Hartmann layers when
the axisymetric rotating flow is subject to a constant vertical magnetic field, Acheson
& Hide (1973), Desjardins, Dormy & Grenier (1999).† We checked the velocity profiles
ux(z) in the region of magnetic vortices and found no satisfactory agreement with the
present theory for Ekman–Hartman rotating flows. The reasons for this disagreement
are probably that the recirculation induced by a heterogenous external magnetic

† We thank the referee who brought these works to our attention.
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field shows details which are not compatible with the present analytic theory: (i)
the rotating flow is not axisymmetric, (ii) neither magnetic field nor angular rotation
are constant, (iii) this is a system of six rotating flows. The quantitative analysis of
these layers requires further detailed investigation. At the moment we can conclude
only that these layers are important to stabilize recirculation even at high Reynolds
numbers as shown in next Section.

3.7. Recirculation in a three-dimensional flow versus vortex generation in a
two-dimensional flow

This paper is devoted to a stationary three-dimensional MHD flow. Recently, Cuevas
et al. (2006a) have reported vortex generation in a two-dimensional flow induced by
a magnetic obstacle. In this Section, we discuss how their two-dimensional results are
related to our three-dimensional results.

In our opinion, how to build a two-dimensional model at high Re is an open
question. Two-dimensionality assumes that the flow rate is kept constant in the
plane under consideration. This assumption is certainly wrong in the case of a
local magnetic field, where Hartmann layers are formed (destroyed) under an inward
(outward) magnetic field gradient, i.e. the streamwise velocity profile in the transverse
direction is becoming more (less) flat, and therefore the fluid must go out of (go into)
the plane, see discussion about given by Votyakov & Zienicke (2007) an their figures 8
and 9.

On one hand, the friction imposed by a no-slip wall stabilizes a flow because it
provides a sink for kinetic energy. For instance, in hydrodynamics there are numerous
experiments which illustrate that the confinement of the endplates increases the
stability of a wake, see e.g. Shair et al. (1963), Nishioka & Sato (1974), Gerich &
Eckelmann (1982), Lee & Budwig (1991). These examples include the delay of the
critical Reynolds number for vortex shedding and the extension of the Reynolds
number range for two-dimensional laminar shedding.

On the other hand, the case of an MHD flow under a local magnetic field always
requires taking into account top and bottom endplates because these plates carry
magnetic poles. In reality, one can increase the distance between poles to have more
two-dimensionality in the middle plane, but this automatically decreases the degree
of space heterogeneity of the external magnetic field. So, it becomes an issue whether
it is practically possible to design a strongly heterogenous magnetic field having a
large distance between magnetic poles.

There is a method to take no-slip top/bottom plates into consideration by means
of the Hartmann friction term, see e.g. Lavrentiev et al. (1990). This has been used
also by Cuevas et al. (2006a). However, this averaged approach is well validated
only in the case of a small flow rate, i.e. low Re, even when the magnetic field is
not strongly varying. It follows from the fact that past the magnetic obstacle the
Hartmann friction takes the form of a Hele-Shaw friction based on the assumption
that velocity is parabolic along the z-axis. This is well validated only for viscous flows
where vorticity advection does not play a significant role, Riegels (1938). The formal
vertical Hele-Shaw friction term inserted into the two-dimensional Navier–Stokes
equations does not describe quantitatively the behaviour of the system with high Re.
We believe that this friction has no significant influence when the advection is strong.

Nevertheless, one can consider mathematically what happens in a two-dimensional
free (no sidewalls) MHD flow where the flow rate is kept constant. This mathematical
problem has been addressed by Cuevas et al. (2006a).
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Figure 13. Flow streamlines in a two-dimensional non-steady free flow: (a) t = 1, (b) 10,
(c) 20, (d) 90, (e) 120, (f ) 150; u(r)|t = 0 = (1.5, 0), N = 30, Re = 100.

This two-dimensional MHD flow had no walls and, hence, no sinks for kinetic
energy except an internal viscosity which is negligible when Re is high. In such a
flow, no vortex pattern can be stabilized, and one would not observe any stationary
recirculation. Instead one obtains non-steady vortex generation; hence, it is worth
discussing a developing flow, i.e. the flow starting from a constant velocity field
u(r)|t = 0 = (ux, 0). We have performed a few runs of a two-dimensional simulation
in order to reproduce results of Cuevas et al. (2006a) and find whether the six-fold
vortex pattern shown in figure 1(b) is general. These results are presented in figure 13.

One observes, at the initial times, symmetric magnetic vortices (figure 13a), and
then a six-vortex pattern (figure 13b, c). This pattern quickly grows in size due to
inertia (figure 13b, c, d), in such a way that attached vortices gradually swell and
reach a dimension much larger than that of magnetic and connecting vortices. When
attached vortices exceed their critical size, they become unstable and lose symmetry,
figure 13(e). This gives rise to the Kàrmàn vortex street, figure 13(f ), illustrated also
by a vorticity contour plot in figure 14. The Kàrmàn vortex street has been reported
by Cuevas et al. (2006a), while the preceding temporal evolution, figure 13(a–f ), is
described here for the first time.
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Figure 14. Vorticity field corresponding to figure 13(f ) (t = 150), (N =9, Re = 100). Dashed
lines are plotted for negative vorticity, and solid lines are plotted for positive vorticity.

It is known that attached vortices in the flow past a solid body can be found
at any Reynolds number Re at the initial instance of time before vortex shedding
starts. One can see that the same situation takes place in an initial flow past the
magnetic obstacle. The difference is that instead of just attached vortices one can also
observe a six-fold vortex pattern developing from the recirculation under the magnetic
gap.

4. Conclusions
We have reported the results of a three-dimensional numerical study on a

stationary liquid metal flow in a rectangular duct under the influence of an external
magnetic field. The interaction parameter N , Reynolds number Re as well as
magnetic field configuration have been systematically varied. Whenever it has been
possible, the numerical results have been quantitatively compared with experimental
ones.

First, an analytical, physically consistent and simple model for the external magnetic
field has been derived. Parameters of the model are the geometric dimensions of the
region occupied by external magnets. This model has been successfully verified by
comparing with experimentally measured data and then used in the paper by varying
the constrainment factor, κ = My/Ly , the ratio between spanwise dimension of the
magnet, 2My , and width of the duct, 2Ly .

One can classify the flow structures into which a stationary MHD flow is organized
into the following three typical categories, depending on the interaction parameter N

as well as spanwise magnetic field heterogeneity.
The first structure, attributed to a low degree of field heterogeneity, is characterized

by a significant electromotive force which opposes the electrostatic field. The
characteristic pattern for this case is the Hartmann flow. If the magnetic field is
uniform, this regime takes place at all N; otherwise it is realized at the N where the
field heterogeneity is not strong manifested.

The second stationary structure is perfectly observed for a fringing magnetic field,
i.e. when the intensity of the transverse magnetic field is varied slowly in the spanwise
and strongly in the streamwise direction. The flow pattern is given by an M-shaped
streamwise velocity profile without recirculation inside the magnetic gap. Here, the
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electromotive force and the electrostatic field can either be opposed or in the same
direction, but the direction of the electromotive force is always in the direction of the
electric current. The loops of the electric current are located mainly in the horizontal
plane.

The decisive condition for the appearance of the third flow structure is a strong
spanwise variation of the magnetic field which induces recirculation inside the
magnetic obstacle. The recirculation starts when the reverse electrostatic field reaches
a critical value. Here, the electromotive force is opposed to the electrostatic field and
the direction of the electric current. For this recirculation regime, the intensities of the
reverse flow, obtained in three-dimensions numerically and by physical experiments
have been compared, and a good agreement has been observed.

The existence regions of stable stationary flow patterns, that is the dependence of the
critical interaction parameter Nc,m to induce recirculation on the constrainment factor
κ , has been calculated and discussed. It has been made clear that no recirculation
is possible for a perfectly spanwise uniform external magnetic field. Moreover, the
MHD flows for various κ have been shown to be similar provided they have the same
ratio N/Nc,m.

Finally, three-dimensional features of the flow under consideration have been
discussed and it has been demonstrated that the magnetic vortices have a stable
disposition. This is contrary to a two-dimensional numerical study where stationary
recirculation is possible only in a creeping flow while at higher flow rate the
recirculation develops vortex shedding. Nevertheless, one can see all these vortex
patterns in a two-dimensional non-steady flow at initial times.

We close this work with some hypotheses on the nature of the transitions that we
have found in this system, namely, (i) the transition between streamlining flow and the
flow with magnetic vortices when Nc,m and κ are varied, and (ii) the transition from
the two-vortex pattern (only magnetic vortices) to the six-vortex pattern (magnetic,
connecting and attached vortices) when the Reynolds number is varied. The first
transition has a high probability of being a topological change of the same solution,
which is stable in the whole space of initial conditions. An increase of the strength as
well as an increase or decrease of the spanwise inhomogeneity of the magnetic field
seem us to be topological changes of the force field resulting in a topological change
of the stationary stable solution. This would be consistent with the fact that we never
found different flow patterns coexisting for the same parameter pair (Nc,m,κ). The
second transition mentioned is in our opinion analogous to the appearance of attached
vortices behind a solid obstacle known from hydrodynamics. The magnetic vortices
act as an obstacle for the flow. On increasing Reynolds number a shear instability
arises resulting in the formation of attached vortices, which for consistency of the
flow be accompanied by connecting vortices. These impressions on the questions of
stability, that we gained from our research on the system considered, however, remain
to be proved rigorously.
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financial support in the frame of the “Research Group Magnetofluiddynamics” at
the Ilmenau University of Technology under grant ZI 667. The simulations were
carried out on a JUMP supercomputer, access to which was provided by the John
von Neumann Institute (NIC) at the Forschungszentrum Jülich. We are grateful for
many fruitful discussions with Andre Thess. Special thanks go to our experimental
colleague Oleg Andreev, for an always close exchange of thoughts and for providing
the experimental data to compare with our numerical results.
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Appendix. Indefinite integrals
We use the following notation: r = (x, y, z), r ′ = (x ′, y ′, z′), �r = |r − r ′| =[�x2 +

�y2 +�z2]1/2 and �x = x −x ′, �y = y −y ′, �z = z−z′. Then, the indefinite integration
over z′ gives

Φ (z)(x, y, z, x ′, y ′, z′) =

∫
dz′

|r − r ′| = −arctanh

[
�z

�r

]
, (A 1)

the indefinite integration over z′, y ′ gives

Φ (z,y)(x, y, z, x ′, y ′, z′) =

∫
dy ′dz′

|r − r ′| = −�x arctan

[
�y�z

�x�r

]

+ �y arctanh

[
�z

�r

]
+ �z arctanh

[
�y

�r

]
, (A 2)

and finally the indefinite integration over z′, y ′, x ′ gives

Φ (z,y,x)(x, y, z, x ′, y ′, z′) =

∫
dx ′dy ′dz′

|r − r ′|

=
1

2
�x2 arctan

[
�y�z

�x�r

]
− �y�z arctanh

[
�x

�r

]

+
1

2
�y2 arctan

[
�x�z

�y�r

]
− �x�z arctanh

[
�y

�r

]

+
1

2
�z2 arctan

[
�x�y

�z�r

]
− �x�y arctanh

[
�z

�r

]
. (A 3)

To confirm this, one can use a commercial program, e.g. Mathematica, to
analytically differentiate (A 3) back and obtain (A 1) finally. The original way to
calculate (A 1)–(A 3) is quite cumbersome, and is not provided here.
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